
Autonomous Guidance Navigation and Control for Agile Quadrotors Using
Polynomial Trajectory Planning and L1 Adaptive Control

Mattia Landolfi∗†, Saptarshi Bandyopadhyay‡, Jean-Pierre de la Croix§ and Amir Rahmani¶

Abstract—We address the challenge to allow efficient au-
tonomous flight in real world environments, both indoor and
outdoor. We use a straight-line SE-SCP to find an initial route
through the environment and minimum snap trajectory gen-
eration using piecewise polynomials. Then, we implement an
adaptive robust control able to address some robustness issues
for quadrotors in outdoor flight, such as mass variation and
wind disturbances. Coupling these techniques we allow high-
speed and aggressive autonomous flight through obstacle-dense
indoor environments, as well as address outdoor disturbances.

1. Introduction
Last decade has seen a growing interest in micro aerial

vehicles due to their large and increasing range of ap-
plications. Recent developments in quadrotors enabled au-
tonomous flight in constrained indoor environments [1]–
[5]. Other researches focused on outdoor scenarios [6]–[8].
Quadrotors in outdoor flight require ideal weather condi-
tions. Some works focused on rejecting external constant
forces [9] and disturbances in indoor [10] and outdoor
[11] spaces. Similar problems have been addressed using
disturbance observer [10], [12]. However, there is not yet
an approach able to allow efficient high speed autonomous
flight in constrained indoor spaces and simultaneously to
address outdoor robustness issues. Recent research in motion
planning algorithms have succeeded in enabling autonomous
quadcopters to fly at high speeds using their full dynamic
capabilities [4], [5]. Simultaneously, latest advances in con-
trol techniques have allowed fast and robust adaptation to
unknown time varing parameters and disturbances [13], and
to unknown nonlinearities [14]. These abilities motivate the
challenge we address in this paper, which is to allow efficient
autonomous flight through cluttered indoor environments
and challenging outdoor spaces.

We first use a straight line SE-SCP algorithm [15] to find
a waypoint-path through cluttered environments, ignoring
the dynamic of the quadrotor. Then, a series of polyno-
mial segments is jointly optimized to link the waypoints
into a smooth trajectory that minimize both snap and time
allocated to each segment. In order to follow these paths

∗ Graduate Visiting Researcher, Jet Propulsion Laboratory (JPL), California
Institute of Technology (Caltech).
† Graduate Student, Department of Control and Computer Engineering, Politec-
nico di Torino; mattia.landolfi@studenti.polito.it
‡ Postdoctoral Researcher, JPL, Caltech; Saptarshi.Bandyopadhyay@jpl.nasa.gov
§ Robotics Systems Engineer, JPL, Caltech; Jean-Pierre.de.la.Croix@jpl.nasa.gov
¶ Research Scientist, JPL, Caltech; Amir.Rahmani@jpl.nasa.gov

and simultaneously to address wind disturbances and mass
variation we present an L1 based adaptive control for a
differentially flat model of the quadrotor.

Main contribution of this paper are: to develop a novel
version of an L1 adaptive control; to couple L1 adaptive
control and polynomial trajectory generation techniques; to
improve latest polynomial trajectory generation methods in
both computational run time and cost of the final trajectory;
to present an application of the L1 adaptive control tech-
nique for a differential flatness system, which is missing in
the literature.

2. Physical Model

Figure 1. Reference frames
The coordinate systems are shown in Fig 1. We use

WRB = WRC
CRB , with components xB , yB and zB , to

define the rotation matrix from the body frame, B, to the
world frame,W . The rotation matrix WRC denotes the yaw
rotation to the intermediate frame C, while CRB represents
the pitch and roll effects. We can write the control input as:

u =
[
u1 u2 u3 u4

]T
(1)

where u1 is the net body force and, u2, u3 and u4 are
the body moments. Force and moments depend on the
angular speed that each rotor produces. Dynamic equations
describing the acceleration of the center of mass are:

mr̈ = −mgzW + u1zB −
1

2
CAcρvrw|vrw| (2)

where m is mass, g is gravity, zW =
[
0 0 1

]T
and

r =
[
x y z

]T
denotes the position vector of the center

of mass in the world frame. While C is the drag coefficients
vector, Ac ∈ R3 represents the cross-sectional area and
vrw =

[
vxw vyw vzw

]T
the velocities in x, y, and z

directions with respect to the wind. We can rewrite (2) as:

r̈ = −gzW +
u1zB
m

+ βT f + δ (3)

where the term βT f + δ is to model the wind effect. Its
parameters are δ ∈ R3, β =

[
βx βy βz

]
with βi ∈ R2,

and f =
[
ṙ ṙ · ṙ

]T
. The angular velocity of the body frame

in the world frame is denoted by:
ωBW = pxB + qyB + rzB (4)

From Euler equations we determine the angular acceleration:

ω̇BW = I−1
[
−ωBW × IωBW +

[
u2 u3 u4

]T] (5)

with I as the moment of inertia matrix of the center of mass.
The evolution of the rotation matrix WRB is given by:

W
ṘB = WRB ω̂BW (6)

We define the state of the system as:
x =

[
x y z ẋ ẏ ż xTB yTB zTB p q r

]T
(7)

Differential flatness [16] of the model without wind
dynamics is demonstrated in [2]. Differential flatness for this
model can be demonstrated following the same procedure.
This property allow us to express all states and inputs in
terms of four flat outputs and a finite number of their
derivatives. Our choice of flat outputs are the yaw angle
and the coordinates of the center of mass in the W frame:

σ =
[
x y z ψ

]T
(8)

A trajectory is defined as a smooth curve in the space of σ:
σ(t) : [0, τ]→ R3 × SO(2) (9)

3. Polynomial Trajectory Generation
We define a flat output variable σi as a polynomial P (t)

of degree N between two points in the flat outputs space.
We need to select the coefficients pn of the polynomial such
that its endpoints and their derivatives match desired values
at t = 0 and t = τ . Furthermore, we want to optimize the
following cost function of the derivatives of the polynomial:

J =

∫ t=τ

t=0

∥∥∥∥d4rdt4

∥∥∥∥2 +
(
d2ψ

dt2

)2

dt (10)

This cost function is used in [2] and effectively discourages
abrupt changes in the motor commands to the quadrotor. We
can write the complete optimization program as:

min
p

pTQp

s.t. Ap− b = 0
(11)

where pTQp is the cost function rewritten in a quadratic
form, with p ∈ RN+1 as the vector of polynomial coeffi-
cients and Q a cost matrix representing our desired penalty
on the 4th and 2nd polynomial derivative for position and
yaw angle, respectively. The constraint matrix A and vector
b can be represented as:

A =

[
A0

Aτ

]
, b =

[
b0
bτ

]
(12)

where matrices A0 and Aτ map the coefficients pn to the
polynomial derivatives at the starting and end points, respec-
tively. While the b0 and bτ vectors specify the values of the
constrained derivatives, including the 0th derivative. Notice
that in (11) each flat output variable σi is decoupled in
both constraints and cost function, hence this minimization
problem can be divided into four optimization problems.

Piecewise Polynomial Joint Optimization
Trajectory of a flat output variable is composed by a se-

quence of segments. We will generate piecewise polynomial
trajectories starting from a series of waypoints in the flat
outputs space selected by a kinematic planning algorithm.
Bry and Richter [4] use a straight-line RRT∗ [17] to select
these waypoints. Our approach is to use a straight-line SE-
SCP [15]. This algorithm uses a spherical-expansion-based
sampling algorithm to explore the workspace and sequen-
tial convex programming techniques to generates a locally
optimal trajectory. The SE-SCP algorithm outperforms the
RRT∗ algorithm in terms of computational run time and cost
of the final trajectory [15]. Each polynomial segment rep-
resents the trajectory between two consecutive waypoints.
We need joint optimization to have each pair of consequent
polynomial segments to agree on the value of the trajectory
derivatives at the in-common waypoint. We formulate the
optimization problem over the vector containing all the
coefficients of all the polynomial segments. The cost matrix
is defined as a block diagonal matrix made of individual Qk
matrices and the constraints are composed by a combination
of two sets. The first set enforce derivatives continuity at
each joint between segments:[

−Aiτ Ai+1
0

] [pi
pi+1

]
= 0 (13)

where pi is the vector containing all the coefficients of the
ith polynomial segment. The second set of constraints is to
specify desired derivative values:

A0
0 0 . . . 0
0 A1

0 . . . 0
...

...
. . .

...
0 0 . . . AK0
0 0 . . . AKτ



p0
p1
...
pK

 =


b00
b10
...
bK0
bKτ

 (14)

where vector bi0 specifies derivatives at the beginning of the
ith polynomial segment while vector bKτ specifies derivatives
at the end point of the last segment. A combination of the
rows of (13) and (14) will enable us to enforce continuity
as well as specify the set of desired derivative values.

This constrained optimization procedure works well for
short trajectories, since to joint optimize several segments
we need to increase the degree of the polynomials with a
consequent increasing in complexity of the optimization pro-
gram that can become ill-conditioned. In order to optimize
long-range path requiring many waypoints and segments can
be used an unconstrained reformulation of the optimization
problem where the endpoint derivatives substitute the poly-
nomial coefficients as decision variables.

Unconstrained Optimization
In order to reformulate to an unconstrained optimization

we first substitute the ith individual segment constraint equa-
tions pi = A−1i bi into the cost function. Then, we re-arrange
the decision terms bi such that specified/fixed derivatives
are grouped together (bF) as well as the unspecified/free
derivatives (bP):

J =

[
bF
bP

]T
CA−TQA−1CT

[
bF
bP

]
(15)

with

CA−TQA−1CT , R =

[
RFF RFP
RPF RPP

]
(16)

where A and Q are block-diagonal matrices of Ai and Qi
from the ith segment, while C is a permutation matrix.
Matrix C can be seen as multiplication of two matrices,
each one with a specific role:

b0
b1
b1
...

bk−1
bk−1
bk


= CT1


b0
b1
...

bk−1
bk

 = CT1 C
T
2

[
bF
bP

]
(17)

Differentiating (15) after partitioning and equating to zero
we obtain the optimal unspecified/free derivatives vector:

b∗P = −R−1PPR
T
FP bF (18)

The coefficients of the polynomials can be recovered back-
mapping derivatives into the space of coefficients using the
appropriate constraint matrix.

The unconstrained optimization problem must be solved
involving dense computation or sparse solver methods. Oth-
erwise, since C is sparse and A−1 and Q are sparse block-
diagonal, singularities issues arise in the use of the two parts
of the R matrix.

Time Allocation
Amount of time τi allocated to each segment is required

for the construction of the optimization problem. Varying
these segment times we can improve the final solution with
respect to a cost function. Since the total trajectory time is
not known a priori, we let it to change in the optimization
in order to trade-off between minimizing the original cost
function and total trajectory time. We find optimal segment
times using the following cost function:

Jτ =

∫ t=τ

t=0

∥∥∥∥d4rdt4

∥∥∥∥2dt+ cτ

K∑
i=0

τi (19)

where cτ is a user-specified penalty on time. This new
cost function has a minimum value for some finite

∑K
i=0 τi

which depends on cτ . We begin with an initial guess of
segment times and then we solve the minimization problem
using a gradient descent technique where we compute the
directional derivative for K vectors denoted by gi as:

∇giJτ =
Jτ (τ + hgi)− Jτ (τ)

h
(20)

where h represents some small number, while vectors gi
are constructed such that the ith element has value 1 and
all other elements are 0. The algorithm for the gradient
descent technique is shown in Algorithm 1. Our choice was
Algorithm 1 Gradient Descent

1: Initialize τ
2: while not convergence or max number of iterations do
3: τ ← τ − γ∇J(τ)

to maintain a step size γ fixed at each iteration. Furthermore,
we defined γ to be inversely proportional to the penalty on

Figure 2. Gradient descent iterations, color-coded by total traversal time.
The initial guess of segment time is 10 s for each segment (black), while
the final optimized total trajectory time is 6.68 s (blue), 2.25 s, 1.91 s and
2.52 s allocated to each segment respectively.

Figure 3. Segment time optimization with cτ = 1000 (top) and cτ = 10000
(bottom). Vectors for acceleration (green) and velocity (red) are shown. The
optimal total trajectory times are 9.83 s and 6.68 s respectively.

time cτ . This decision is to prevent the gradient growing
exaggeratedly for high penalties on time, as well as to use
reasonable γ values in case of small cτ .

Fig 2 shows the iterative refinement of segment times
through gradient descent in which the time allocated to each
segment is decreased from an initial guess (black) to an
optimal value (blue). The segment times ratio also shifts to
minimize the cost function in (19). Fig 3 shows optimized
trajectories from a given arrangement of waypoints adopting
two different time penalties. Vectors for acceleration (green)
and velocity (red) are smaller in the top trajectory due to the
lower cτ . Regardless of the value of cτ the geometric shape
of the final optimized trajectory does not vary, showing that
the optimal ratios of segment times and cτ are independent
for the same set of waypoints.

Solving Practical Issues
If after optimization we detect an intersection between

a trajectory segment and an obstacle, we re-optimize the
polynomial (including time allocation) adding an extra way-
point halfway between the two ends of that segment, as
in [3]. This additional waypoint is collision-free because
located on the optimal piecewise-linear path generated by
the straight-line SE-SCP. This re-optimization procedure is
repeated recursively until we obtain a collision-free trajec-
tory. Usually the addition of one or two midpoints in a
given segment resolves collisions in indoor environments
[4]. Several strategies could be used to reduce the need of
re-optimization, like placing an elevated cost on paths that
go near obstacles or slightly enlarging obstacles during the
route-finding phase.

Another issue involves input constraints. We would like
to have that no portion of the commanded trajectory requires

control inputs that exceed what actuators are capable of
providing. We manage this issue during the time allocation
phase. Knowing that the optimal segment times ratio is in-
dependent of the total trajectory time we firstly optimize the
ratio of times through gradient descent technique neglecting
actuator constraints. Then, we scale the total trajectory time
in a separate univariate optimization, maintaining the opti-
mal times ratio constant, until an actuator limit is reached
or the modified cost function is minimized.

Time Computation
Time computation of a similar polynomial trajectory

generation technique, as well as comparison with RRT∗
using polynomial steer function, are presented in [4]. How-
ever, main differences in our approach are: a different time
allocation cost function, which does not include the yaw
contribution of the original cost function in (10), resulting in
reduced time computation without degenerating correctness
of the final solution; the use of SE-SCP algorithm instead of
RRT∗ for the waypoints selection through the environment.
Using SE-SCP we improve performances in both computa-
tional run time and cost of the final trajectory. Comparison
between the two algorithms is presented in [15].

4. L1 Based Adaptive Control
In this section, we will implement an L1 based adaptive

controller for the presented differential flatness system to
deal with wind disturbances as well as time-varying mass.
In this controller, only the parasitic drag are considered as
disturbances, while other drag effects are ignored.

L1 Adaptive Control Structure

Figure 4. L1 Adaptive Control Structure

Figure 4 shows the closed-loop system. The low-pass
filter C(s), with gain C(0) = 1, ensures that the estimation
loop is decoupled from the control loop [13]. Using dynamic
equations in (3) we can write the uncertain plant system as:

r̈ = −gzW + αu1zB + βT f + δ (21)
where α is the inverse of the time-varying mass. We choose
the state predictor with the same structure of the plant:

ˆ̈r = −gzW + α̂u1zB + β̂T f̂ + δ̂ (22)
where the adaptive estimates α̂, β̂ and δ̂ replace the unknown
parameters.

L1 Controller
The controller has to follow specified trajectories,

σT (t) = [rT (t)
T , ψT (t)]

T . We compute the first control
input projecting the desired force vector onto the actual zB :

u1 = C(s)(Fdes · zB) (23)

where desired force vector is computed as follows:

Fdes =
r̈T − β̂T f − δ̂ + gzW

α̂
+ ε (24)

where ε is used to correct numerical errors due to the
physical model formulation. In particular, the projection of
Fdes onto the B frame z axis (23) and the re-projection
onto the zB axis in the quadrotor physical model (21),
lead to small position errors. These impact on the z axis
more than on the other axes. Since we model the predictor
as the quadrotor physical model, some effects of these
errors, although diminished, remain hidden and accumulate
over time. Since a PD controller is able to manage these
imprecision acting directly on the position error, we decide
to model factor ε as a PD controller:

ε = −Kpep −Kvev (25)
where ep and ev are the errors on position and velocity,
while Kp and Kv are positive definite gain matrices. Next
we compute the desired rotation matrix Rdes. Desired zB is
computed observing that it is along the desired thrust vector:

zB,des =
Fdes
‖Fdes‖

(26)

We then construct unit vector xC,des using specified yaw
angle ψT (t) and we compute xB,des and yB,des as follows:

xC,des =
[
cosψT sinψT 0

]T
(27)

yB,des =
zB,des × xC,des
‖zB,des × xC,des‖

(28)

xB,des = yB,des × zB,des (29)
provided that we never have zB,des parallel to xC,des, we
can uniquely determine the desired rotation matrix Rdes. We
can fix the problem of singularity observing that −xB,des
and −yB,des are also consistent with ψT and zB,des and
therefore directly check which solution is closer to the actual
quadcopter orientation. Next we compute the body frame
components of desired angular velocity, ωBW,des, as:

hω =
1

α̂ · Fdes · zB
(ȧT − (zB,des · ȧT)zB,des) (30)

pdes = −hω · yB,des, qdes = hω · xB,des (31)

rdes = ωCW · zB,des = ψ̇T zW · zB,des (32)
where hω is the projection of 1

α̂·Fdes·zB ȧT onto the xB−yB
plane. Now we compute the three remaining control inputs:[

u2 u3 u4
]T

= −KReR −Kωeω (33)
where KR and Kω are diagonal gain matrices, while eR and
eω define error on orientation and angular velocity:

eR =
1

2
(RTdes

WRB −WRTBRdes)
∨ (34)

eω =
B
[ωBW]− B

[ωBW,des] (35)
where ∨ denotes the vee operator. Finally we compute the
rotor speeds to achieve the desired control input simply
inverting the appropriate linearization.

The estimates α̂(t), β̂(t) and ˆδ(t) are governed by the
following adaptation laws:

˙̂α(t) = −kαu1(t)˜̈z(t), α̂(0) = α̂0 (36)
˙̂
βi(t) = −kβifi(t)˜̈i(t), β̂i(0) = β̂i0, i ∈

{
x y z

}
(37)

Table 1. RUNNING TIME ON MATLAB

Controller Runtime (ms)

PD 0.10
L1 0.12

˙̂
δ(t) = −kδ˜̈r(t), δ̂(0) = δ̂0 (38)

where kα ∈ R+, kδ ∈ R3 and kβi = diag(ρ1, ρ2) are the
adaptation gains, and ˜̈r represents the acceleration error:

˜̈r(t) = ˆ̈r(t)− r̈(t) =
[
˜̈x(t) ˜̈y(t) ˜̈z(t)

]T
(39)

Another way to compute the adaptive estimates could be in-
volving the use of the projector operator, as in [13] and [14].
The projection operator ensures that the adaptive estimates
α̂(t), β̂(t) and δ̂(t) remain inside the defined compact sets
[αl, αu], [−βb, βb] and [−δb, δb], defined in [14].

Remarks
Proofs of stability and convergence for a pure L1 adap-

tive controller are presented in [13] and [14], while com-
parison with several adaptive controllers can be found in
[18]. The factor ε, other than correct numerical errors due
to the physical model formulation, has effects on stability
and convergence of the controller, and on parameters es-
timation. Due to the nature of ε, analysis on stability and
convergence for the nonlinear PD controller developed in
[2] for the presented quadrotor model are also valid for this
L1 based controller. Moreover, the ε term cause errors in
parameters estimation. However, these errors do not reduce
performances since the estimated parameters change in order
to have a predictor system response as close as possible to
that of the system. Nevertheless, in the case we would like
to have perfectly match between disturbances and estimated
parameters ε gains must be set to 0 and a forgetting factor
has to be added to the wind estimation to put steady-state
errors back to zero in case of no disturbances. These steady-
state errors are due to two behaviors: on the z axis the effect
of the mass variation and the wind is almost the same; when
orientations different from hovering, disturbances on the z
axis generate disturbances also on the other axes, involving
activation of the estimation parameters of x and y axes.

5. Implementation and Results
The following will be a comparison between the pre-

sented L1 controller and the nonlinear PD controller devel-
oped in [2]. We generated 9th degree polynomial (10 coeffi-
cients) trajectories and we set second and third derivatives to
0 at the beginning and end points of the trajectory. We im-
plemented the simulations in Matlab and Simulink environ-
ments under the following: in order to have simulations as
close as possible to the practical environment we discretized
our controllers at 100Hz; we decided to express the attitude
error as in (34) though it has no physical meaning; we used
real data of a Crazyflie 2.0 nano quadcopter [20]; we took
into account rotors limitations. A discretization frequency of
100Hz allows our controllers to run safely. Table 1 shows
running time on matlab for both our controllers. The running
time of the L1 is comparable with that of the PD.

In the L1 implementation, high gains in the ε factor

Figure 5. Sample 3-segment trajectory. Position in x,y and z, and yaw (blue)
were generated using the polynomial trajectory generation technique, while
roll (red) and pitch (green) were extrapolated from the differentially flat model.

can lead ε to take over the L1 in the behavior against
disturbances. We noticed that, in the simulation without
disturbances, one or two order of magnitude lower for Kp

and Kv than those used for the PD controller allows good
manage of the numerical issues due to the model without
degenerating the L1 typical control response. However, in
practice can be used lower values for ε with respect to those
used for the PD controller. For KR and Kω, instead, we set
the same values as those used in the PD implementation.

The discretization of the controller put an upper limit
to the adaptation gains. The analysis of these bounds is not
straight forward. We decided to use a tuning strategy based
on the analysis of the upper limits obtained considering the
mass variation and wind disturbances separately, as in [11].
We first set kδ and then the other adaptive gains as:

kα =
kδ

u1,max
2
, ρ1 =

kδ
ṙmax

2
, ρ2 =

kδ
ṙmax

4
(40)

where u1,max and ṙmax can be extrapolated from the gen-
erated polynomial trajectory and eventually adjusted for the
task the quadrotor has to perform.

We tested controllers on different trajectories and both
yield good and comparable tracking performances. We then
tested the behavior response against mass variation. Fig 6
shows errors and control output comparison when a mass
of 15 ·10−3Kg (56% of the quadcopter weight) is added to
the quadcopter at the first red vertical line of the sample 3-
segment trajectory in Fig 5 and then released at the second
red vertical line. We can notice that the response of the
L1 is faster in both cases. In particular, the overshoot in
the position error is lower and the error decrease faster to
lower values. Another emergent property of the L1 is in the
controller outputs. As we can see in Fig 6, the response is
smoother with respect to that generated by the PD controller.
In practice, oscillations in the input signal of the rotors are
always not appreciated because of the motors dynamics.

Finally we tested our controllers against wind distur-
bances, Fig 7. We decided to simulate wind disturbances as
a step input in β and δ parameters at the first red vertical line
of the sample trajectory in Fig 5. However, for simulation
results closer to real flights would be better to use the
Dryden model introduced in [19], which estimates wind
disturbances as a filtered white-noise.

Figure 6. Adding and releasing a mass for PD (left) and L1 (right)

Figure 7. Response to wind on the x axis for PD (left) and L1 (right)

6. Conclusion
We presented an L1 based adaptive controller to control

both position and attitude, and simultaneously, to address
wind disturbances and mass variation. The key advantages
of this L1 controller over the PD controller are: fast adapta-
tion against disturbances resulting in rapid decrease in the
position error; lower overshoot error caused by disturbances;
smoother control input. We also presented a detailed de-
sign of minimum snap trajectory generation using piece-

wise polynomials and time allocation method that trades
off between snap and time minimization. The polynomial
trajectory generation procedure is computationally fast to be
used for real time purpose. Coupling these techniques we
enabled efficient autonomous flight through both obstacle-
dense indoor and challenging outdoor environments.

Acknowledgment This research was carried out in part at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.
c©2017 California Institute of Technology. All rights reserved.

References
[1] A. Boeuf, J. Cortés, R. Alami and T. Siméon, ”Planning agile mo-

tions for quadrotors in constrained environments”, IEEE International
Conference on Intelligent Robots and Systems (IROS 2014), 2014.

[2] D. Mellinger and V. Kumar, ”Minimum snap trajectory generation and
control for quadrotors”, IEEE international conference on robotics and
automation (ICRA’11), 2011.

[3] J. Pan, L. Zhang and D. Manocha, ”Collision-free and smooth trajec-
tory computation in cluttered environments”, International Journal of
Robotics Research 31: 11551175, 2012.

[4] A. Bry, C. Richter, A. Bachrach and N. Roy, ”Aggressive flight of
fixed-wing and quadrotor aircraft in dense indoor environments”, The
International Journal of Robotics Research 1-34, 2015.

[5] C. Richter, A. Bry and N. Roy, ”Polynomial Trajectory Planning
for Aggressive Quadrotor Flight in Dense Indoor Environments”,
International Symposium of Robotics Research (ISRR 2013), 2013.

[6] L. V. Santana, A. S. Brandão and M. Sarcinelli-Filho, ”Outdoor
Waypoint Navigation with the AR.Drone Quadrotor”, International
Conference on Unmanned Aircraft Systems (ICUAS), 2015.

[7] A. Symington, R. De Nardi, S. Julier and S. Hailes, ”Simulating
Quadrotor UAVs in Outdoor Scenarios”, IEEE International Confer-
ence on Intelligent Robots and Systems (IROS 2014), 2014.

[8] P. Moonumca, Y. Yamamoto and N. Depaiwa, ”Adaptive PID for
Controlling a Quadrotor in a Virtual Outdoor Scenario: Simulation
Study”, Proc. of IEEE International Conference on Mechatronics and
Automation, 2013.

[9] D. Cabecinhas, R. Cunha and C. Silvestre, ”A Nonlinear Quadrotor
Trajectory Tracking Controller With Disturbance Rejection”, American
Control Conference (ACC), 2014.

[10] H. Wang and M. Chen, ”Trajectory tracking control for an indoor
quadrotor UAV based on the disturbance observer”, Transactions of
the Institute of Measurement and Control 1-18, 2015.

[11] M. Q. Huynh, W. Zhao and L. Xie, ”L1 adaptive control for quad-
copter: Design and implementation”, 13th International Conference on
Control Automation Robotics & Vision (ICARCV), 2014.

[12] A. Modirrousta and M. Khodabandeh, ”Adaptive Robust Sliding
Mode Controller Design for Full Control of Quadrotor with External
Disturbances”, International Conference on Robotics and Mechatron-
ics, 2014.

[13] C. Cao and N. Hovakimyan, ”L1 Adaptive Controller for Systems with
Unknown Time-varying Parameters and Disturbances in the Presence
of Non-zero Trajectory Initialization Error”, International Journal of
Control, vol. 81, no. 7, pp. 1147-1161, July, 2008.

[14] C. Cao and N. Hovakimyan, ”L1 Adaptive Controller for a Class of
Systems with Unknown Nonlinearities”, American Control Conference,
2008.

[15] F. Baldini, S. Bandyopadhyay, R. Foust, S. J. Chung, A. Rahmani,
J. P. de la Croix, A. Bacula, C. M. Chilan, F. Y. Hadaegh, ”Fast
Motion Planning for Agile Space Systems with Multiple Obstacles”,
AIAA/AAS Astrodynamics Specialist Conference, 2016.

[16] M. J. Van Nieuwstadt and R. M. Murray, ”Real-time trajectory
generation for differentially flat systems”, International Journal of
Robust and Nonlinear Control, vol. 8, pp. 995-1020, 1998.

[17] S. Karaman and E. Frazzoli, ”Sampling-based algorithms for optimal
motion planning”, The International Journal of Robotics Research 30:
846-894, 2011.

[18] J. D. Bošković and N. Knoebel, ”A Comparison Study of Several
Adaptive Control Strategies for Resilient Flight Control”, AIAA Guid-
ance, Navigation, and Control Conference, 2009.

[19] H. W. Liepmann, ”On the Application of Statistical Concepts to the
Buffeting Problem”, Journal of the Aeronautical Sciences 19(12):793-
800, 1952.

[20] ”Bitcraze AB”, https://www.bitcraze.io

